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Abstract
The Bean–Livingston barrier at the interface of type-II superconductor/soft-
magnet heterostructures is studied on the basis of the classical London approach.
This shows a characteristic dependence on the geometry of the particular
structure and its interface as well as on the relative permeability of the involved
magnetic constituent. The modification of the barrier by the presence of the
magnet can be significant, as is demonstrated for a cylindrical superconducting
filament covered with a coaxial magnetic sheath. Using typical values of the
relative permeability, the critical field of first penetration of magnetic flux is
predicted to be strongly enhanced, whereas the variation of the average critical
current density with the external field is strongly depressed, in accord with the
observations of recent experiments.

1. Introduction

Heterostructures on the macro- or nano-scale involving type-II superconductor and ferromagnet
elements show great potential for improving superconductor properties such as critical currents
and critical fields, and therefore have been extensively studied both experimentally and
theoretically during the past few years [1–27]. If hard magnets are used, the interaction
of the magnetic vortices of the superconductor with the magnetic moments of the ferromagnet
may lead to an enhancement of the pinning of the vortices [3–6] or to an increase of the critical
fields [7, 15]. Soft magnets, on the other hand, aid to amend superconductor performance by
shielding the transport current self-induced magnetic field as well as the externally imposed
magnetic field [18–20, 28, 29]. Superconductors encompassed with such materials exhibit
enlarged critical currents through wide ranges of the strength of an applied field, when in the
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critical state [22–26], and even overcritical currents, when in the Meissner state [27]. The
latter state persists until the shielding and/or transport currents, which push magnetic vortices
into the superconductor bulk, overcome the Bean–Livingston barrier against entry of magnetic
flux [30]; an impediment created by the (positive) Gibbs free energy of the vortices themselves.
This suggests the surmise that, due to the induced magnetization, the presence of a soft magnet
may alter the characteristics of nucleation of a vortex at the superconductor/magnet interface
as compared to nucleation at the surface of a superconductor facing vacuum, the phenomenon
analysed hitherto [30–35].

Any theoretical study of the Bean–Livingston barrier at the interface of a type-II
superconductor/soft-magnet heterostructure, discerned by the observable critical field of first
penetration of magnetic flux and the observable average critical current density of loss-free
transport of electric charge interlinked with it, must resolve two cardinal points:

(a) the dependence of these observables on the geometry of the particular structure and its
interface;

(b) the effect of the relative permeability of the involved magnetic constituent.

Here, we exemplify both traits for an infinite flat and, respectively, finite curved geometry of
a type-II superconductor next to a soft-magnetic environment, adopting the classical London
approach.

2. Theory

The magnetic induction B in the superconductor region around a vortex obeys the London
equation [36]

B + λ2∇ × (∇ × B) = Q, (1)

with the London penetration depth λ and the source Q at position r given by

Q(r) = �0

∫
vc

ds δ(s − r), (2)

where �0 denotes the quantum of magnetic flux and δ means the Dirac delta function, the
integration extending along the vortex core. The magnetic field H in the magnet region and
the magnetic induction B in the entire space satisfy the Maxwell equations

∇ × H = 0 and ∇ · B = 0. (3)

To simplify later analysis, we postulate the relationship B = µµ0H in the region confined
to the magnet itself, assuming a (field-independent) relative permeability of the magnet,
µ, apart from the permeability of free space, µ0. Furthermore, to avoid complications
arising from the proximity effect, we invoke the presence of an insulating layer at the
superconductor/magnet interface,of thickness much smaller than the London penetration depth
(as observed, e.g., in MgB2/Fe composites [26]) regarding, for mathematical convenience, this
layer as infinitesimally thin. Boundary conditions then imply continuity of the tangential
component of the magnetic field as well as of the normal component of the magnetic induction
when the interface between the superconductor (S) and the magnet (M) is traversed:

Bt,S = µ0 Ht,M and Bn,S = µµ0 Hn,M. (4)
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Figure 1. Schematic view of the semi-infinite superconductor (light shading) and the semi-infinite
magnet (dark shading), their interface coinciding with the plane x = 0 of a Cartesian coordinate
system x , y, z. The solid vertical line indicates the insulating layer between the superconductor and
the magnet. A straight magnetic vortex parallel to the superconductor/magnet interface (arrowed
full line) and its image (arrowed dashed line) as well as a magnetic vortex loop (arrowed full
semicircle) and its image (arrowed dashed semicircle), all situated in the plane z = 0, are shown.
The direction of the external field B0 is marked.

2.1. Infinite flat geometry

The configuration addressed first is thought to consist of a superconductor extending across
the infinite half-space −∞ < x < 0 and a soft magnet extending across the infinite half-
space 0 < x < ∞, their interface occupying the plane x = 0, with an externally imposed,
homogeneous field B0 pointing in the y-direction of a Cartesian coordinate system x, y, z, as
shown in figure 1. For this usually discussed geometry of the Bean–Livingston barrier [30],
the presence of the magnet does not affect the entry of a straight magnetic vortex parallel to the
superconductor/magnet interface. Indeed, the vortex self-field here has a tangential component
only, which vanishes at the interface owing to the vortex image field; the magnetization of the
magnet thus is preserved, leaving the vortex field the same as that of a vortex near the flat surface
of a semi-infinite superconductor facing vacuum. Nevertheless, the situation could change in
the more realistic case of fluctuation penetration of a magnetic vortex loop (see figure 1), since
the magnet then might experience additional magnetization, with a corresponding interaction
energy contributing to the barrier at the superconductor/magnet interface.

The required solution of equations (1)–(4) for the magnetic induction B can be
conveniently decomposed according to B = Bm + b, where Bm is the Meissner field induced
by the external field in the absence of the magnetic vortex loop, with its only component

Bm
y (x) = B0 exp(x/λ), (5)

and b is the asymptotically vanishing field of the loop itself. We represent the latter field and
its source by two-dimensional Fourier integrals of the kind

f(r) = 1

(2π)2

∫ ∞

−∞
dky

∫ ∞

−∞
dkz f̃ (ky ,kz )(x) exp[i(ky y + kzz)]. (6)
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For a vortex loop situated in the plane z = 0, the Fourier transforms of the Cartesian components
of the vortex field inside the superconductor region are

b̃
(ky ,kz )
x,y (x) =

[
b̃
(ky,kz )
x,y (0)− P̃

(ky ,kz )
x,y /2qλ2

]
exp(qx)

+
1

2qλ2

∫ a

0
dx ′ Q̃

(ky ,kz )
x,y (x ′) exp(−q|x + x ′|),

b̃
(ky ,kz )
z (x) = b̃

(ky,kz )
z (0) exp(qx),

(7)

where q = (k2 + 1/λ2)1/2 with k = (k2
y + k2

z )
1/2; the boundary values herein read

b̃
(ky ,kz )
x (0) = µP̃

(ky ,kz )
x /(k + µq)λ2,

b̃
(ky ,kz )
y,z (0) = iky,z P̃

(ky ,kz )
x /k(k + µq)λ2,

(8)

with characteristic integrals of the type

P̃
(ky ,kz )
x,y =

∫ a

0
dx ′ Q̃

(ky ,kz )
x,y (x ′) exp(−qx ′) (9)

controlled by the shape of the loop and by the maximum distance between the loop and the
interface, a. The vortex field inside the magnet region allows the representation b = −µµ0∇ψ
through a scalar potential ψ , whose Fourier transform is given by

ψ̃(ky ,kz )(x) =
[

P̃
(ky ,kz )
x /k(k + µq)λ2

]
exp(−kx). (10)

We note that, although the magnetic moment of the vortex loop, with its only component
in the direction of the external field

m y =
∫ a

0
dx ′ Q̃(0,0)

y (x ′)[1 − exp(−x ′/λ)], (11)

does not depend onµ, the self-energy of the loop,being determined by the field prevailing at the
vortex core, could well be sensitive to the magnetic environment. Yet, adopting a semicircular
shape of the loop with radius a, for which

Q̃
(ky ,kz )
x (x) = 2i�0 sin[ky(a

2 − x2)1/2]

Q̃
(ky ,kz )
y (x) = −2�0[x/(a2 − x2)1/2] cos[ky(a

2 − x2)1/2],
(12)

we find, using equations (7)–(10) in the region outside the vortex core whose radial extent may
be delineated by the coherence length of the superconductor bulk, ξ � λ, that the self-energy
is represented by the dominant term proportional to the length of the loop,

Ffi
∼=

(
�2

0

4πµ0λ2

)
πa ln

(
a

ξ

)
, (13)

apart from small corrections including the factor 1/µ due to the contribution of the magnet;
a result which restates that for a semi-infinite superconductor with a flat surface facing
vacuum [33, 34]. Intuitively, the decaying tendency of the omitted corrections with increasing
relative permeability here can be conceived in the following way: the requirement of continuity
of the normal component of the magnetic induction across the superconductor/magnet interface
on the one hand, and the definition of the total magnetic flux through its quantization in the
superconductor on the other hand, ensure that the strength of the magnetic induction in the
magnet region is typically B ∼ �0/λ

2, whereas the strength of the magnetic field in the magnet
region is typically H ∼ �0/µµ0λ

2. This yields a contribution to the self-energy of the loop,
proportional to the product of both quantities, which falls off as indicated above.

The Bean–Livingston barrier arises from a competition between attraction of the vortex
loop to the superconductor/magnet interface, accounted for by equation (13), and repulsion
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due to the Lorentz force exerted—by the Meissner current—on the loop. In the geometry of
figure 1, this current flows perpendicular to the plane z = 0, and the work done by the external
field during growth of the loop from radius a ∼= ξ to radius ξ � a � λ is proportional to the
area finally covered by the loop,

�Wfi(B0)
∼= 1

2�0πa2 j m
z (B0), (14)

where

j m
z (B0) = B0/µ0λ (15)

means the density of the Meissner current at the flat superconductor/magnet interface. From
equations (13) and (14), the Gibbs free energy of the loop, i.e. the thermodynamic function of
relevance here, when ξ � a � λ, becomes

Gfi(B0)
∼=

(
�2

0

4πµ0λ2

)
πa ln

(
a

ξ

)
− 1

2
�0πa2 j m

z (B0), (16)

identifying the interface barrier against entry of the loop as a function of the strength of the
external field. Once, when B0 is fixed, the radius of the growing loop has reached its critical
size ac defined by the condition ∂Gfi/∂a = 0, further loop expansion becomes irreversible
and vortex entry proceeds. Depending on the quality of the superconductor/magnet interface,
this may happen at different values of the critical loop radius throughout the range (and even
beyond) where equation (16) applies. Whilst for an ideal interface, with scale of roughness
σ < ξ , vortex entry occurs at a distance ac

∼= ξ , in the case of a real interface, with scale of
roughness ξ � σ � λ, vortex entry occurs for ac = σ . Equation (16) in conjunction with
equation (15) thus yields for the critical field of first penetration of magnetic flux across the
flat superconductor/magnet interface

B0
p =

(
�0

4πλσ

)
ln

(
eσ

ξ

)
; (17)

a form which assumes values between Bc1 and Bc, the lower and, respectively, thermodynamic
critical field [36], when σ varies betweenλ and ξ . Obviously, the interface barrier against entry
of the loop, and therefore the critical field of first penetration of magnetic flux as well as the
average critical current density deriving from it, are insensitive to the magnetic environment,
since, in the infinite configuration of figure 1, the external field remains totally unshielded.
However, in any finite superconductor/magnet heterostructure, with the range of its magnetic
constituent extending below the distance to the sources of this field, a significant shielding
effect may indeed occur.

2.2. Finite curved geometry

The configuration addressed next is thought to consist of a cylindrical superconducting filament
of radius R, extended infinitely in the z-direction of a Cartesian coordinate system x , y, z and
covered with a coaxial magnetic sheath of thickness d , the externally imposed, homogeneous
field B0 again being aligned parallel to the y-direction, as depicted in figure 2. Whereas the
self-energy of an (almost) semicircular vortex loop of radius a � λ, R, located in the plane
z = 0 and nucleated at the filament/magnet interface, duplicates the dominant term given by
equation (13),

Fci
∼=

(
�2

0

4πµ0λ2

)
πa ln

(
a

ξ

)
, (18)

with corrections due to the effect of the magnetic sheath even smaller than those for the infinite
configuration examined above [35, 37], the Meissner current, and hence the work done by the
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Figure 2. Cross-sectional view of the superconducting filament of radius R (light shading) and
the coaxial magnetic sheath of thickness d (dark shading), their axes coinciding with the z-axis of
a Cartesian coordinate system x , y, z. The solid ring indicates the insulating layer between the
superconducting filament and the magnetic sheath. A magnetic vortex loop (arrowed semicircle,
size not to scale!) situated in the plane z = 0 and nucleated at the filament/magnet interface is
shown. The direction of the external field B0 and the definition of cylindrical polar coordinates
(r, ϕ, z) are marked.

external field during growth of the loop, as stated by equation (14), does change markedly
when considering the finite magnetic environment. We therefore quote the Meissner solution
of equation (1) expressed in cylindrical polar coordinates (r, ϕ, z) adapted to the filament: the
radial and azimuthal components of the magnetic induction inside the superconductor region
are [38]

Bm
r (r, ϕ) = B0 AS[I0(r/λ) − I2(r/λ)] sin ϕ,

Bm
ϕ (r, ϕ) = B0 AS[I0(r/λ) + I2(r/λ)] cosϕ,

(19)

with

AS =4µ/{[(µ + 1)2− (µ−1)2 R2/(R + d)2]I0(R/λ) + (µ2 − 1)[1 − R2/(R +d)2]I2(R/λ)},
(20)

where I0 and I2 denote modified Bessel functions of the first kind. Equations (19) in conjunction
with Ampère’s law yield for the density of the Meissner current flowing along the filament

j m
z (r, ϕ) = 2 j m

z (B0)AS I1(r/λ) cos ϕ; (21)

an expression which adopts its maximum absolute value on the circumference of the filament,
j m
max(B0), at angles ϕ = 0 and π indicating the points of most probable nucleation of the vortex

loop. Accordingly, the work done by the external field during growth of the loop from radius
a ∼= ξ to radius ξ � a � λ is

�Wci(B0)
∼= 1

2�0πa2 j m
max(B0), (22)

where, in the practically important limit R � λ,

j m
max(B0)

∼= j m
z (B0)/α (23)

represents the density of the Meissner current at the curved filament/magnet interface, the
parameter

α = 1

4
[µ + 1 − (µ− 1)R2/(R + d)2] (24)
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subsuming the combined shielding effect of the superconducting filament and the magnetic
environment. Thus, from equations (18) and (23), the Gibbs free energy of the loop, say at the
point ϕ = 0, when ξ � a � λ, becomes

Gci(B0)
∼=

(
�2

0

4πµ0λ2

)
πa ln

(
a

ξ

)
− 1

2
�0πa2 j m

max(B0). (25)

Evidently, the interface barrier against entry of the loop, taken as a function of the strength
of the external field, does prove sensitive to the presence of the magnet owing to appreciable
shielding of this field in the finite configuration of figure 2. Again, referring to the condition
∂Gci/∂a = 0 applied to equation (25) in conjunction with equations (15), (17) and (23), we
find for the critical field of first penetration of magnetic flux across the curved filament/magnet
interface, if R � λ,

Bp
∼= αB0

p , (26)

revealing a substantial enhancement by the factor α as compared to the respective field of first
penetration of magnetic flux across the flat superconductor/magnet interface for moderately
high values of the relative permeability already, brought about by the shielding effect.

The flow of a transport current, of magnitude it, along the filament means that the Meissner
current density, given by equation (21), is to be supplemented with the corresponding isotropic
current density [39]

jz,t(r) = (it/2πRλ)I0(r/λ)/I1(R/λ), (27)

and hence the maximum current density j m
max(B0) entering equation (25) must be replaced by

the maximum total current density expressed, if R � λ, by

jtot(B0)
∼= j m

max(B0) + it/2πRλ. (28)

When ac is fixed, the condition ∂Gci/∂a = 0 determines the average critical current density of
loss-free transport along the filament, jc = it/πR2, as well. Resorting to equations (23), (25)
and (28) in conjunction with equations (15) and (17), we get for B0 < Bp, if R � λ,

jc(B0)
∼= 2[B0

p − Bm
max(B0)]/µ0 R, (29)

where

Bm
max(B0)

∼= B0/α, (30)

according to equations (19), reflects the maximum strength of the magnetic induction at the
curved filament/magnet interface. The average critical current density thus is seen to fall off
linearly with the strength of the external field, at a rate determined by the parameterα, i.e. by the
shielding effect of both the superconducting filament and the magnetic environment, revealing a
strong reduction of the field dependence for moderately high values of the relative permeability
already, while the zero-field value of the average critical current density is conserved.

We comment that, if the filament were absent, and hence shielding confined to the magnetic
sheath alone, the maximum strength of the magnetic induction at the curved inner surface of
the sheath would be decreased. By formally letting λ → ∞ for fixed R, equations (19) yield

B0
max(B0) = B0/β (31)

with the parameter

β = 1

4µ
[(µ + 1)2 − (µ− 1)2 R2/(R + d)2], (32)

duplicating an otherwise derived result [40]. Since β > α holds for any value of the
geometrical and material characteristics involved, B0

max(B0) < Bm
max(B0) ensues throughout,
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which confirms that the predicted enhancement of the critical field, disclosed by equation (26),
like the concomitant attenuation of the external field, revealed by equation (30), cannot be
exclusively ascribed to the shielding effect of the magnetic sheath, as argued in some previous
attempts [21, 41–43].

To appraise the relevance of the above results, we take a MgB2 filament with radius
R = 5.0 × 10−4 m covered by an Fe sheath of thickness d = 2.5 × 10−4 m and relative
permeability µ = 50 [22–24], noting the practically interesting temperature of 32 K, at
which the London penetration depth and the coherence length adopt the respective values
λ = 1.8 × 10−7 m and ξ = 6.5 × 10−9 m [44]. If the scale of roughness σ , and hence the
critical loop radius ac, varies between the limits λ and ξ , the critical field of first penetration of
magnetic flux across the curved filament/magnet interface, Bp, given by equation (26), is found
to range between about 0.16 and 1.02 T (as compared to the range between about 0.01 and 0.07 T
when the magnetic sheath were absent), and the average critical current density, jc(B0), from
equation (29), turns out to vary between about 6.84×107 and 4.42×108 A m−2 at zero external
field, its rate of change with the field, ∂ jc/∂B0, amounting to about −4.36 × 108 A m−2 T−1

(as opposed to about −6.37 × 109 A m−2 T−1 when the magnetic sheath were absent). These
estimates are in accord with the observations of recent experiments [22–24]. We add that,
considering the moderately large ratio λ/ξ of around 28, the low critical temperature of
about 40 K and the just minor anisotropy of polycrystalline MgB2 [44], thermally activated
penetration of magnetic flux across the barrier, considered before [32, 33], here is insignificant.

3. Summary

In conclusion, we have studied the Bean–Livingston barrier at the interface of type-II
superconductor/soft-magnet heterostructures and demonstrated a characteristic dependence
on the geometry of the particular structure and its interface as well as on the relative
permeability of the involved magnetic constituent. Thus, for the flat interface between a
semi-infinite superconductor and a semi-infinite magnet, the external field remains totally
unshielded, leaving the barrier essentially the same as that at the flat surface of a semi-infinite
superconductor facing vacuum. However, in any superconductor/magnet heterostructure
where substantial shielding of the external field occurs, the modification of the barrier by
the presence of the magnet can be significant, as has been demonstrated for the example of
a cylindrical superconducting filament covered with a coaxial magnetic sheath. In this finite
geometry, with its curved superconductor/magnet interface, using typical values of the relative
permeability, we predict that the critical field of first penetration of magnetic flux is strongly
enhanced and, concomitantly, that the variation of the average critical current density of loss-
free transport of electric charge with the external field is strongly depressed; the zero-field
critical current density value, however, is retained, since the transport current self-induced
magnetic field remains unshielded in this geometry. Owing to the expulsion of magnetic flux
out of the filament, the attenuation of the external field, and hence the field dependence of
the average critical current density, cannot be ascribed to the shielding effect of the magnetic
environment alone.

Stimulating discussions with S X Dou, H C Freyhardt, A Gurevich, J Horvat, H Jarzina,
C Jooss, A V Pan, F M Peeters, M D Sumption and V M Vinokur are gratefully acknowledged.
This work was supported by the VORTEX Programme of the European Science Foundation
(ESF) and by a research grant from the German Research Foundation (DFG).
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